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Longitudinal studies, where data are repeatedly collected on one subject over a period, are common in medical research. 
When effect of a time-varying exposure on an outcome of interest is measured at different time points, standard statistical 
methods fail to give robust estimate in the presence of time-dependent confounders. There is alternative method avoid, 
that is, inverse probability weighted estimation of marginal structural models the problems associated with standard 
approaches.
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 follow-up. The relationship between breast-feeding and sub-
sequent child health outcomes may also be subject to time-de-
pendent confounding, when risk factors for the outcome both 
predict and are changed by breast-feeding. For example, 
infant weight may influence the probability that a mother con-
tinues breast-feeding. In turn, breast-feeding (compared with 
formula feeding) may affect weight gain.[12]

Time-varying effects of exposure have been considered 
in the epidemiologic and statistical literature.[13–15] The aim of 
the review is to extend the literature with the understanding of 
time-varying third variable model by elucidating the concept 
of time-dependent confounding variable and how to adjust 
those variables to infer the association between exposure and 
 outcome.

Confounding

Confounding refers to a situation where exposure and out-
come share a common path, which may be represented by 
one variable or multiple variables. Let A (0) represent expo-
sure (breast-feeding) at time 0 (using values in parentheses 
to represent time), B (2) outcome (allergy) at time 2, and C (0) 
a confounding variable (infant weight) occurring temporally 
before A (0) that has a direct causal effect on both A (0) and 
B (2); note that, in Figure 1a, A (0) has no causal effect on 
B (2). We need to consider substantive knowledge in deci-
sions on adjustment for confounders. In Figure 1a, control for 
C (0) through regression, stratification, or restriction provides 
a consistent estimate of the C (0)—conditional causal effect of 
exposure A (0) on outcome B (2). A series of extensions of the 
confounding definition to settings involving time-varying vari-
ables and effects will be considered in the following sections.

Introduction

Estimated effects of an exposure on health outcome 
vary between studies. For example, association between 
breast-feeding and childhood asthma in observational studies 
has shown both harmful and beneficial effects.[1–5] Similarly, 
effect of breast-feeding on atopic dermatitis is inconsistent 
from observational studies.[6,7] Reverse causality, selection 
biases, and unmeasured confounding may be the reasons 
for these inconsistent results.[8,9] To measure the effect of 
breast-feeding on child health outcomes from observational 
studies, a range of confounders, that is, maternal, pregnancy, 
and perinatal risk factors for the outcome of interest are gen-
erally adjusted.[2–5] Time-dependent confounding could be 
another reason for these inconsistent findings from observa-
tional studies. Time-dependent confounder is a variable that 
is associated with current exposure and future outcome, pre-
dicted by previous exposure, and predicts current exposure.[10]  
Here, conventional statistical methods produce biased esti-
mates of exposure effect, because they fail to account for the 
time-dependent nature of the confounders and exposures.[11]

Conventional statistics are readily implemented provided 
that confounders are measured once, at the start of the 
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Strengths[18]

1.  Re-weighting to achieve a pseudo-sample unaffected by 
confounding is intuitive and relatively easy to explain.

2.  The analysis is easily implementable using weighted ver-
sions of standard routines.

3.  MSM cope well with different sorts of outcome variable. It 
is possible to fit logistic MSM for binary outcomes and Cox 
MSM for time-to-event outcomes.

Limitations[18]

1.  Inverse weighting can be unstable and inefficient if there 
are extreme weights.

2. Continuous exposures are difficult to handle.
3.  Possible interactions between exposure and time-varying 

covariates cannot be explored because the MSM are mar-
ginal with respect to the latter.

Discussion

In this technical note, we have highlighted the issues asso-
ciated with time-dependent confounding. We have described 
the application of MSM to combat time-dependent confound-
ing variable. The impact of time-dependent confounding 
is an important issue that must be seriously considered by 
researchers analyzing data from longitudinal observational 
studies with time-varying exposures. Appropriate methods 
should be used to evaluate the impact of potential time- 
dependent confounding. Even if adjustment for a large num-
ber of baseline covariates does not affect estimated exposure 
effects, there may still be situations in which time-dependent 
confounding will cause biased results. Ideally, before conduct-
ing a study on time-dependent exposures, researchers should 
consider the potential for time-dependent confounding, iden-
tify the (most important) time-dependent confounders, and 
measure those repeatedly.
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Time-Modified Confounding
Here exposure A now varies over time, but C (0) con-

founds only the A (0)–B (2) relationship. This is a case of time- 
modified confounding. Control for C (0) will give a consistent 
estimate of the C (0)—conditional causal effect of A (0) on 
B (2), while the effect of A (1) on B (2) can be estimated con-
sistently from the crude (unadjusted) model [Figure 1b].

Time-Varying Confounding
Figure 1c shows A (0) and A (1) representing exposure at 

times 0 and 1, and C (0) and C (1) represent time- varying con-
founding variables measured temporally before times t  =  0 
and t = 1, respectively. At each time point, the confounders 
have a direct causal effect on exposure. Now to estimate the 
total (i.e., direct and indirect) causal effect of A (0) on B (2), 
adjustment for C (0) is necessary. To estimate the total causal 
effect of A (1) on B (2), we must adjust for C (1). In this sit-
uation, standard statistical methods (e.g., Cox regression 
with time-varying exposure and covariates) can consistently 
estimate, as previously defined, the C (t)—conditional causal 
effect of exposure A (t), t = 0 or 1, on outcome B (2).

Figure 1d describes an extension of Figure 1c, where now 
the time-varying confounder is affected by prior exposure. In 
this case, adjustment for C (1) is necessary to estimate the 
effect of A (1) but blocks a causal effect of A (0). Estimation of 
the total effect of A (t) will be biased when standard statistical 

methods will be used. Robins et al.[16] have proposed a series 
of methods to address this problem, including marginal struc-
tural models (MSM).

Time-Modified Confounding by Time-Varying Factors
Figure 1e describes a further extension of Figure 1c, which 

illustrates time-modified confounding. In this case, the effect 
of the confounding variables C (t) on exposure A (t) differs 
over time t; in the case of Figure 1e, there is a direct causal 
effect of C (0) on A (0), but there is no direct causal effect of 
C (1) on A (1). Figure 1f describes a companion scenario of 
time-modified confounding, where C (0) has no direct causal 
effect on A (0), although C (1) does have a direct causal effect 
on A (1).

In both the examples (i.e., Figure 1e and 1f), the causal 
effect of A (t) on B (2) could be consistently estimated by 
standard methods (such as linear or logistic regression). For 
example, in Figure 1e, adjusting for C (0) is sufficient to con-
trol confounding and to provide an unbiased estimate of the 
causal effect. In Figure 1f, the simple cross-tabulation of A (0) 
and B (2) would provide an unbiased estimate of the causal 
effect of A (t) on B (2). However, these approaches are based 
on the knowledge that the hypothesized diagram is correct. 
In practice, one may be unlikely to estimate the effect of A (t) 
without using all measured exposures and confounding infor-
mation. Such adjustment may introduce bias. In practice, 
these simple solutions would fail if there was a causal effect 
of C (1) on A (1).[16] MSM can provide consistent estimates in 
either case.

Methods

MSM aim to estimate the effect of exposure on outcome 
by appropriate control for the effects of time-dependent con-
founders. The model is fitted in a two-stage process in which

1.  each subject’s probability of having their own exposure 
history is used to derive inverse-probability-of-exposure 
weights (IPTW), and

2.  the exposure–outcome association is estimated in a 
regression model that is weighted using the IPTWs.

MSM technique creates at each point of time a pseudo-pop-
ulation of counterfactuals (a hypothetical population in which 
all patients seem as exposed and unexposed to an exposure), 
in which, time-invariant and time-dependent confounders 
are balanced, and therefore, causal association between the 
exposure and the outcome is the same as in the original study 
population.[17] The pseudo-population is created by weighting 
every patient in the population by the inverse of the condi-
tional probability of being exposed to the exposure that the 
study participant actually exposed. The technique compares 
two counterfactuals: outcome of the entire study population 
exposed to the exposure and outcome of the entire study pop-
ulation not exposed to the exposure. Thus, it gives valid causal 
interpretations between the exposure and the outcome.

Figure 1: Causal diagrams representing confounding (a), time-modified  
confounding by a time-fixed covariate (b), time-varying confounding 
(c), time-varying confounding affected by prior exposure (d), and 
time-modified confounding (e and f)
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ciated with time-dependent confounding. We have described 
the application of MSM to combat time-dependent confound-
ing variable. The impact of time-dependent confounding 
is an important issue that must be seriously considered by 
researchers analyzing data from longitudinal observational 
studies with time-varying exposures. Appropriate methods 
should be used to evaluate the impact of potential time- 
dependent confounding. Even if adjustment for a large num-
ber of baseline covariates does not affect estimated exposure 
effects, there may still be situations in which time-dependent 
confounding will cause biased results. Ideally, before conduct-
ing a study on time-dependent exposures, researchers should 
consider the potential for time-dependent confounding, iden-
tify the (most important) time-dependent confounders, and 
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